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ABSTRACT 
We describe an efficient implementation of a 3D movement-
based kernel density estimator for determining animal space use 
from discrete GPS measurements. This new method provides 
more accurate results, particularly for species that make large 
excursions in the vertical dimension. The downside of this 
approach is that it is much more computationally expensive than 
simpler, lower-dimensional models. Through a combination of 
code restructuring, parallelization and performance 
optimization, we were able to reduce the time to solution by up 
to a factor of 1000x, thereby greatly improving the applicability 
of the method. 

Categories and Subject Descriptors 
D.1.3 Parallel programming, H.3.4 Performance Evaluation, J.2 
Mathematics and statistics, J.3 Biology and genetics 

General Terms 
Performance, Algorithms 

Keywords 
Parallel computing, performance optimization, biotelemetry, 

wildlife ecology, visualization 

1. INTRODUCTION 
The increasing sophistication and miniaturization of digital 
biotelemetry tracking devices (biologgers) has enabled 
researchers to collect large, highly accurate and long-term 
datasets on the movements of free-ranging animals that would 
normally be prohibitively difficult to observe directly in the wild 
[1-3]. Global Positioning System (GPS) biologgers can now 
record an animal’s geographic coordinates (e.g. latitude and 
longitude) at accuracies to within 2m for deployments lasting 
more than a year, or even longer if powered by a solar panel. 
GPS biologgers have also dramatically reduced in size and can 
now be safely attached to small animals. For example, the 
California condors reintroduced to their former habitat in 
Mexico by San Diego Zoo Global (SDZG) have a <50g solar-
powered GPS biologger attached to their wings. These condor 
tags provide hourly location fixes from each bird at a resolution 
of just a few meters that can be downloaded directly from the 
Internet [4]. 

Advances in biotelemetry technologies have contributed to 
major advances in our understanding of key concepts of animal 
ecology, including resource use, home range, dispersal, and 
population dynamics [5]. Biotelemetry technologies are also 
becoming powerful tools for informing strategies for conserving 
endangered species and habitats. For example, GPS biologgers 
can provide accurate information on the movements of a tracked 
animal that can then be matched to the environmental attributes 
that the species most often associates with to build an accurate 
and biologically realistic picture of its ranging patterns and 
habitat use. Conservation managers and regulatory agencies can, 
in turn, use this scientific information to gauge and improve the 
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effectiveness of existing and proposed measures to protect 
important animal populations, such as habitat conservation 
zoning, reserve boundaries and wildlife corridors. 

Biologists typically define non-random and restricted patterns of 
space use of individual animals using a home range estimator. A 
wide range of empirical home range estimators have been 
developed to model animal spatial behaviors, and more recently, 
the interplay between the environment and an animal’s cognitive 
map of its habitat [5, 6]. Home range estimators typically 
summarize patterns of animal spatial behaviors as densities of 
space use relative to time derived from nonparametric estimates 
of animal locations across a landscape. A prime example is the 
spatial probability density function known as the utilization 
distribution (UD), that estimates the probabilities of where an 
animal might have occurred at an arbitrary time during the 
period the animal was observed [7, 8]. The kernel density 
estimator (KDE), which uses a weighted sum of kernels placed 
over observed animal locations [9], has become a standard 
technique for estimating home ranges. However, KDEs are 
criticized for sometimes excluding areas that have been used by 
animals (type I errors) or including areas that have not been used 
(type II errors) and biotelemetry data sets with relatively short 
time intervals between locations need to be subsampled to 
ensure independence [10]. 

The Brownian bridge approach [11] provides an alternative 
KDE that integrates kernels over time along a movement path 
interpolated between observed locations. Benhamou [12] 
distinguished Worton’s location-based kernel density estimators 
(LKDE) from movement-based kernel density estimators 
(MKDE), which includes Brownian bridge and biased random 
walk models [11, 12]. Unlike LKDEs, MKDEs account for time 
between consecutive observations, do not requiring independent 
samples from the UD, and more realistically represent the space 
used by an animal. 

The coevolution of biologgers and home range estimators is 
bringing inferences on animal space use closer to biological 
reality. However, current estimators fail to capitalize on the 3D 
profiles offered by modern GPS biotelemetry datasets. Animal 
space-use is multi-dimensional and can be characterized within 
two x and y planar spatial dimensions, as well as a z-dimension 
representing altitude (for flying or arboreal species), elevation 
(for terrestrial species), or depth (for aquatic species). 
Biologgers have been providing multidimensional data on 
animal movements for decades. Yet surprisingly, there are 
almost no modeling techniques that explicitly integrate the 3rd 
spatial dimension of the z-coordinate into quantitative 
characterizations of animal spatial behaviors. Disregarding the z 
dimension greatly limits our understanding of the vertical 
component of animal ranging patterns and restricts our ability to 
define and predict how animals move through landscapes and 
select and use habitats [13]. Traditional 2D home range 
estimators may also misrepresent the space use of animals that 
occupy habitats with a strong vertical component. 

While 3D visualization and modeling tools have been used 
extensively in disciplines like chemistry, climatology, and 
physics, biologists are only beginning to recognize the 
theoretical and applied value of incorporating the vertical aspect 
into analyses of animal space use. We recently advanced the 
movement-based kernel density estimator method of calculating 
animal home ranges by extending it into three-dimensions (3D 
MKDE [14]. 3D models of animal space-use can enhance 
conservation strategies for mitigating the effects of 

anthropogenic impacts on vagile wildlife populations. For 
example, analyzing the 3D MKDE home range volumes of birds 
and bats in relation to the spatiotemporal distribution of aircraft 
flight paths, buildings, or wind turbines will provide more 
accurate estimates of collision risk than 2D models. Improved 
understanding of the 3D spatial behaviors of the many aquatic 
animals currently being tracked with biologgers, such as marine 
turtles, would help managers to minimize their incidental 
capture by fisheries. 3D MKDEs could also be incorporated into 
predictive models of wildlife exposure to soil, air and water 
borne contaminants. 

2. MKDE ALGORITHM 
In this section we provide the formalism for the 3D MKDE 
method. Our objective is to use observed location data to 
develop a density estimate describing space-use of an animal at 
the times it was not observed. We follow the method of Tracey, 
Sheppard, et al., who describe the development method in great 
detail and provide several illustrative examples [14]. Here, we 
describe computational aspects of the method in greater depth. 

2.1 Data set 
Suppose we have made n observations of the locations of an 
individual animal. We index observations by m=0, …, n-1. The 
mth observation consists of an x-coordinate, a y-coordinate, a z-
coordinate, and a time which we denote xm, ym, zm, tm, 
respectively. We require the observations to be ordered in time 
such that tm-1 < tm < tm+1 for any m. Further, we assume that the 
observed locations subject to observation error described by 
normal distributions with means xm, ym, zm, and variances   !m

2 , 

  !m
2 , and   !m

2 , respectively. Notice that we assume that the error 
variances are the same for the observed values of x and y. The 
observation error variances   !m

2  and   !m
2 must be estimated 

independently, and are typically either provided by the 
manufacturers of the telemetry equipment or estimated from 
field trials. In some cases, they are the same for all m when 
observation-specific variances cannot be estimated. The mth 
move step is defined by two consecutive observations m and 
m+1. In order to ensure that we do not include move steps with 
unusually long time intervals, for example when the GPS 
receiver fails to acquire one or more position fixes, we only use 
move steps where   !tm = tm+1 " tm # !tmax given a user-specified 

maximum allowed time of   !tmax . We use I(m) = 1 if this 
condition is met, and 0 otherwise, as an indicator function.  

2.2 Spatial Domain 
We compute the probability for every voxel (3D cell) on a 
regular grid in three-dimensional space. We index rows by 
i=0,…,I-1, columns by j=0,…,J-1, and levels by k=0,…,K-1 
where I, J, and K are the number of rows, columns, and levels, 
respectively. Rows, columns, and levels correspond to the y-, x-, 
and z-dimensions of the 3D MKDE, respectively. We index 
voxels by v=i+j!I+k!I!J. V denotes the random variable for 
the voxel in which the individual is found. We define the 3D 
regular grid on which the density will be computed by 1D arrays 
of voxel center coordinates in the x, y, and z spatial dimensions 
denoted xGrd, yGrd, and zGrd. Because we assume a regular 
grid, the half the lengths of the sides of a voxel in each 
dimension are hx = (xGrd[1]-xGrd[0])/2, hy = (yGrd[1]-
yGrd[0])/2, and hz = (zGrd[1]-zGrd[0])/2. We can determine 



the extent of the grid by [xGrd[0]- hx, xGrd[J-1]+ hx] for the x-
dimension and similarly for the other spatial dimensions. 
 
Often, we must bound the physical space an animal can occupy 
in the z-dimension in order to produce a more realistic 3D 
MKDE [14].We can set a lower and upper bound the density in 
the z-dimension at an location (x,y) by a(x,y) and b(x,y), 
respectively.  These bounds can be described by two 2D rasters, 
but whether or not the MKDE must be bounded above or below 
is case specific. For example, we use a digital elevation model to 
set the lower boundary for a condor. 
 

2.3 Algorithm 
We estimate the 3D MKDE using a trivariate normal kernel 
integrated over time for each observed move step. The kernel 
describing the probability density at time t and location (x,y,z) is 

   fXYZ (x, y, z | u(t),!(t)) , 

where   µ(t)  is a vector of means and   !(t)  is the 3 ! 3 
covariance matrix. We assume that the joint density can be 
represented by the product of the univariate densities for each 
spatial dimension as  

   

fXYZ (x, y, z | u(t),!(t)) = fX (x |µ1(t)," xy
2 (t))#

fY (y |µ2(t)," xy
2 (t))#

fZ (z |µ3(t)," z
2(t))

 

That is, we assume independence in each spatial dimension, 
conditional on the constraints in the z-dimension. This 
assumption can be exploited to increase the computational 
efficiency of the 2D or 3D MKDE calculations. 

To obtain the average probability that the animal was in a given 
voxel v at some arbitrary time during the time interval [tm, tm+1), 
given that the voxel v is within the allowed range in the z-
dimension, we calculate 

11
(v ) (x, y,z | ( ), ( ))

j x i ym k z

m j x i y k z

x h y ht z h

m XYZ
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W

+ + + +
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However, if the voxel v is not in the allowed range in the z-
dimension, then ( ) 0mP v V= = . 

Next, we sum over all valid observed move steps by 
1

0
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Finally, we obtain the normalization constant by calculating 
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In practice, this amounts to dividing the non-normalized 
probability for each voxel by the sum of the non-normalized 
probabilities over all voxels. 

In addition, two variance parameters,  !
2  and  !

2 , must be 
estimated form the data as described by Tracey, Sheppard, et al. 

[14]. Finally, the user must specify the number of integration 
time steps (nSteps) per move step.  

Computationally, we iterate through each move step m, 
numerically integrate over time using the trapezoid rule by 
iterating through nStep integration time steps per move step, 
then iterate through the x, y, and z dimensions of the regular 
grid. This process, together with the auxiliary functions needed 
to calculate means, variances and integrals, are described by the 
function Compute3DMKDE() in the Appendix. 
The function KernelMean() describes the algorithm for 
calculating the vector of kernel means as a function of time. This 
function calculates the expected location of the animal at a time 
t on the interval [tm, tm+1) for move step m. The function 
KernelVar() describes the algorithm for computing the diagonal 
elements of the covariance matrix 
 

  

!(t) =

" xy
2 (t) 0 0
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where   
! xy

2 (t)  is the time-dependent kernel variance for the x-

dimension and y-dimension   ! z
2(t)  is the time-dependent 

variance for the z-dimension. These variances incorporate 
observation error and uncertainty in the animal’s position at 
unobserved times t between tm and tm+1. Finally, function 
IntegrateNormal() provides the method for integrating the 
univariate normal density for each spatial dimension. The 
function Phi() takes a standardized normal random variable as 
its argument and returns the corresponding value of the standard 
normal cumulative density function (c.d.f.) 

3. OPTIMIZATION AND 
PARALLELIZATION OF MKDE 
ALGORITHM 
One downside of implementing a fully 3D MKDE is the greatly 
increased computational expense relative to simpler, lower-
dimensional methods. We decided to take a two-pronged 
approach to making the computations more tractable: 
restructuring of the code to optimize the underlying algorithm 
and shared memory parallelization of the key loops. 

3.1 Program restructuring 
The computationally demanding portion of the original version 
of the code logically consisted of four sets of nested loops 

1. Groups:  sets of observations for a particular animal over a 
given time 

2. Voxels: 3D discretization of the animal domain 
3. Observations: GPS measurements at particular time 
4. Interpolations: Interpolated values of location at times 

between observations 
 

At the innermost loop, a contribution is made to the voxel 
density from a kernel function that depends on both the 
horizontal and vertical distances between the voxel and the 
interpolated point. Although the original code makes optimal 
use of cache by accessing the voxels in their storage order, it 
results in the repeated calculation of kernel parameters that do 
not depend on the distance to the voxel. For example, the two 
variances that are needed to evaluate the kernel depend only on 



the distance between the interpolated point and the bounding 
observations. Reordering so that the loop over voxels occurs at 
the innermost level of nesting makes it easier to avoid these 
repeated calculations 

Variances, coordinates of the interpolated point and other kernel 
parameters are now evaluated once and then used for all of the 
voxels. After reordering the loops, we rewrote the loop over 
voxels as an equivalent set of nested loops over the three spatial 
dimensions. This makes additional opportunities for the 
avoidance of unnecessary calculations more obvious. For 
example, quantities that do not depend on the z-coordinate, such 
as the squared distance in the xy-plane between voxel and kernel 
origin can be pre-computed before entering the new innermost 
loop and repeatedly used. These speedups make it practical to 
implement more meaningful, but also more computationally 
expensive, quantities such as the integral over the voxel volume 
to yield voxel probabilities. 

3.2 Cutoff on kernel evaluation 
As originally written, the kernel was evaluated at every voxel. 
The contribution from a kernel falls off rapidly with the distance 
from the kernel origin, particularly for interpolated points that 
are close to the observations where the variance is low. The 
restructuring of the code described in the previous section makes 
it much more straightforward to apply a variance dependent 
cutoff distance. Rather than applying the cutoff within the 
innermost loop, bounds on the voxel loop indices are pre-
determined thereby limiting iterations to only those voxels that 
will be within the cutoff. 

The application of a cutoff changes the inherent scalability of 
the code with problem size. Given n observations and N voxels, 
the original run time scaled as O(nN). The use of a cutoff results 
in a fixed amount of work per observation and reduces the 
scaling to O(n). For a simple uniform cutoff of d cells in all 
three spatial dimensions and ignoring boundary effects, the time 
to solution will be shortened by a factor of N/(8d3). The scaling 
behavior when using a more realistic variance-dependent cutoff 
will be more complicated and depends on the characteristics of 
the data set. The relative error when applying a cutoff will be 
problem dependent, but for our test problem using a tight cutoff 
of 20 voxels in each direction resulted in only 0.08% error 
relative to original code. At a 50-voxel cutoff, no error was 
detected. 

3.3 Shared memory parallelization 
While an MPI version of the code was already available, we felt 
that the shared memory version might be preferable for a 
number of reasons. First, the natural chunk of work is at the 
level of an individual animal observed over a period of time 
(e.g. condor-month or manatee-week). Chunks could be 
distributed to different processes, each of which runs as a multi-
threaded job on a single compute node. Although the scalability 
of the shared memory version is limited by the number of 
compute cores available in a node, this should not be a handicap 
assuming that the time to solution for an individual chunk is 
sufficiently short and that the researchers are more concerned 
with throughput rather than minimizing the time to solution for a 
single unit of work. 

Second, given the nature of the computations, where each voxel 
can be updated independently, a threaded version of the code 
can be very simple to develop, maintain and deploy. In fact, 
after restructuring the code to achieve better performance as 
described in the previous section, the parallelization involved 

the addition of just a single OpenMP directive before the 
outermost (x-coordinate) of the three spatial dimension loops. 
Our application is targeted at a wide range of users with varying 
degrees of sophistication and access to hardware ranging from 
laptops to supercomputers. By avoiding the need to locally 
install an MPI library, the user only needs to download a single 
binary. For those users who decide to build their own 
executables from source, they would only need access to an 
OpenMP capable C++ compiler. 

Finally, a shared memory implementation may potentially be 
more efficient, particularly if the parallel portion of the code 
contains no serial or critical regions. Even within a node, the 
MPI overhead can degrade performance unless a high-
performance intra-node communications library such as LiMIC 
[15] is available. 

3.4 Benchmarks 
The MKDE algorithm is in a state of active development and 
code modifications made as part of this collaboration are 
reintegrated into newer versions of the software. As a 
consequence, it is not practical to reverse engineer later versions 
to match the original structure. The following benchmarks 
should be considered as representative snapshots of an earlier 
version of the code. In addition, the optimal way to apply a 
variance-dependent cutoff is still being investigated. For 
simplicity, we restrict our study to a fixed-size cutoff. 
Nonetheless, these timings provide a general overview of the 
impact of our changes on the performance. 
 
Table 1. Benchmark of test problem based on 337 Condor 
observations from September 2010. Timings for both original 
and optimized codes obtained from parallel runs using 16 cores 
on a single Gordon compute node. All executables built with 
Intel C++ compiler (icpc) version 13.0.1 with -O3, -xHOST and 
-mkl. Optimized version of code includes reordering of loops, 
pre-calculation of reused quantities and other statement-level 
modifications. In rows 4-9, d=D refers to the size of the fixed 
cutoff. 
 

version t(s) speedup 
Original 1829 1.0 
Optimized 139 13.2 
Opt w/ d=100 25.3 72.3 
Opt w/ d=60 9.5 192.5 
Opt w/ d=50 7.1 257.6 
Opt w/ d=40 5.2 351.7 
Opt w/ d=30 2.7 677.4 
Opt w/ d=20 1.4 1306.4 

 
A subsequent round of optimizations took advantage of the fact 
that the kernel can be separated into a product of functions that 
depend separately on the horizontal (x and y) and vertical (z) 
distances from the kernel origin. A vector of the z-dependent 
function results can be calculated once before entering the loop 
over voxels and reused at every location in the xy-plane. These 
timings are presented separately in Table 2 since they rely on a 
regular grid, the usual case, and would not be applicable to an 
implementation of the algorithm on an irregular grid. 



4. VISUALIZATION 
The output from the code is a cell-centered scalar probability 
density on a 3D rectilinear uniform grid. This was written out by 
the original code in VTK ASCII format and visualized in 
Paraview. The original process was refined as follows making it 
possible to visualize results in both Paraview and VisIt software. 

4.1 Restructuring output 
The code was restructured to write output as a brick of doubles 
in binary format, wrapped with an XDMF metadata header to 

Table 2. Benchmark of test problem based on 337 Condor 
observations from September 2010, with additional 
optimizations that take advantage of kernel function being 
separable into product of z-dependent and xy-dependent terms. 
 

version t(s) speedup 
Original 1829 1.0 
Optimized 42.5 43.0 
Opt w/ d=100 3.87 472 
Opt w/ d=60 1.67 1095 
Opt w/ d=50 1.25 1463 
Opt w/ d=40 0.87 2102 
Opt w/ d=30 0.67 2729 
Opt w/ d=20 0.46 3976 

 
 
describe the binary data as a cell centered scalar 3D unigrid. The 
reduction in file size relative to the original ASCII data was 
found to be 85%, a ratio that held for a range of original file 
sizes. Another output restructuring was made to compute voxel 
probabilities by integrating the kernels over the voxel rather than 
voxel-centered probability densities. With earlier code, the 
voxel-centered probability densities were extremely small and 
close to hardware precision epsilon. This caused reliability 
concerns, especially when using the output data in other tools. 
 

4.2 Isosurface Extraction 
One key interest for the scientist is to visualize and explore the 
bird’s habitat envelope at multiple probability densities. This 
required computation of corresponding isovalues, which were 
calculated as follows 

• Create 1D indexed array A, containing voxel probabilities 
• Create 2D array B, where B[1] contains probabilities and 

B[2] contains corresponding index from array A 
• Sort 2D array B in place with probabilities as key in 

increasing order 
• Create another 2D array C with C[1] containing cumulative 

densities from sorted array B[1] and C[2] containing 
corresponding index in sorted array B[2] 

• Pick a percentage of the total density of interest, for 
example 95%, then perform a lookup in C[1] for 95% to 
identify original index in C[2].  

• Look up the scalar probability density in array A at index 
found above. This is the isovalue for 95% envelope 

• Create an isosurface at above isovalue 
 

Figure 1 shows the trajectory and isosurfaces with probability 
envelopes at 99%, 95%, 90%, 75% and 50%. 

4.3 Adding Context 
While the visualization of scalar probability density is useful, it 
requires context to provide further insight about a bird’s location 
and habitation zone. To accomplish this a digital elevation 
model (DEM) of the terrain was added and further refined by 
addition of texture map marking features like shorelines, etc. 
Other elements like wind turbines are also being added. This has 
enabled the scientist to explore the habitat zone in geographic 
context.  

4.4 Visualization Discussion  
Visualization was used to compare the output from original and 
revised MKDE code, as well as with the observed trajectories.  
We are able to observe the possible nest locations of the birds 
and their habitat in 3D. Currently, the visualization is setup as a 
pipeline in VisIt software, which reads data including temporal 
probability density, and corresponding isovalues and DEM. We 
are training the scientist to perform these visualizations on local 
desktop as well as remotely on Gordon supercomputer at SDSC. 

5. FUTURE WORK 
The large improvements in the code performance make it 
possible to carry out calculations that were previously not 
feasible. Obviously it will be easier to process larger amounts of 
data, obtained either by tracking greater numbers of animals or 
recording observations at a higher frequency. Enhancement to 
the MKDE implementation and their impact on the final results 
can also be evaluated more quickly. One novel idea that was 
recently proposed was to calculate probability contour volumes 
using a sliding time window. This might entail an order or more 
magnitude of work, but would eliminate or reduce the sharp 
discontinuities observed in the visualization when jumping from 
one month to the next. We would also like to pipeline the 
visualization such that few predetermined plots are created after 
each computation. We also plan to leverage SeedMe.org 
infrastructure [16] to share the new results ubiquitously. Finally, 
a very fast algorithm allows calculations to be launched and 
have results returned in just seconds. This might be an extremely 
valuable capability for a conservation biologist in the field who 
wants immediate information on the recent range of one or more 
animals. Finally, researchers are beginning to consider 
calculations involving multiple animals and overlaps in the 
space use. These suggestions are just a beginning and we are 
hoping that the end users will drive new use cases based on the 
enhanced capabilities. 
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Figure 1 The image depicts a composite visualization for a volume 98.5k x 223.5 km x 5.5km, where vertical axis has been scaled by 5x. Panel (A) shows trajectory of a condor in March, 
2010. Panel (B) is same as (A) with addition of isosurface encompassing 50% probability region. Panels (C-F) successively add isosurfaces at 75%, 90%, 95% and 99% probabilities. 
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8. APPENDIX : CODE OUTLINE 
In the pseudocode, the arguments x, y, z, and t are 1D arrays of 
double values representing our observed data. That is, the mth 
observation (denoted xm, ym. zm, and tm in the text) is (x[m], 
y[m], z[m], t[m]). The arguments obsVarXY and obsVarZ 
(denoted 2

m!  and 2
m!  in the text) are 1D arrays of double 

variables where the mth element is the observation error variance 
for the move step in the (x,y)-dimensions and z-dimension, 
respectively. The arguments mvVarXY and mvVarZ are single 
double precision variances for the move variances parameters (
2!  and 2!  in the text) in the (x,y)-dimensions and z-dimension, 

respectively. The 1D arrays of double precision floating point 
variables xGrd, yGrd, and zGrd define the 3D regular grid on 
which we compute the 3D MDKE, as described in the text. 
From the 2D arrays lower[][] and upper[][] which correspond to 
a(x,y) and b(x,y) in the text, we create the 1D integer arrays 
lowerVox[] and upperVox[], which contain indexes into zGrid 
for each i,j, where lower[i][j] corresponds to lowerVox[i+j!I] 
and upper[i][j] corresponds to lowerVox[i+j!I]. The value of  
lowerVox[i+j!I] equals the number of elements in zGrd less 
than lower[i][j], while upperVox[i+j!I] equals the number of 
elements in zGrd less than upper[i][j] minus one. The double-
precision argument tMx (  !tmax  in the text) is the maximum 
allowed time duration of a move step that can be included in the 
MKDE estimation. Finally, nStep is the number of numerical 
integration time steps per move step. In the functions 
KenrelMean() and KernelVar(), t is the time in the numerical 
integration, x0, y0, z0, and t0 are the observed data at the 
beginning of the move step while x1, y1, z1, and t1 are the 
observed data at the end of the move step (i.e. observations m 
and m+1 for the mth move step). 
  



Compute3DMKDE(x: double[], y: double[],  
              z: double[], t: double[],  
              tMx: double, obVarXY: double[],  
              obVarZ: double[], mvVarXY: double,  
              mvVarZ: double, xGrd: double[],           
              yGrd: double[], zGrd: double[],  
              lowerVox: int[], upperVox: int[],   
              tMx: double, nStep: int)  
              : double[] 
 
nObs " length(t) 
 
(nx, ny, nz) " length(xGrd, yGrd, zGrd)  
 
// we assume a regular grid 
xsz " xGrd[1] – xGrd[0] 
ysz " yGrd[1] – yGrd[0] 
zsz " zGrd[1] – zGrd[0] 
 
nv " nx*ny*nz 
mkde " double[nv] // init all elements to 0 
W " 0 
 
for (m in 0 to nObs - 2) 
  deltaT " t[m+1] – t[m] 
  if (deltaT <= tMx) 
    tStep " deltaT/nStep 
    tmpIntegral " 0 
    for (s in 0 to nStep) 
      tCurrent " t[m] + s*tStep 
      mu " KernelMean(tCurrent, t[m], t[m+1], 
                       x[m], x[m+1], 
                       y[m], y[m+1], 
                       z[m], z[m+1]) 
      var " KernelVar(tCurrent, t[m], t[m+1], 
                       obVarXY[m], obVarXY[m+1], 
                       obVarZ[m], obVarZ[m+1], 
                       mvVarXY, mvVarZ) 
 
      for (i in 0 to nx – 1) //Parallel loop 
        probX " IntegrateNormal(xGrd[i]-xsz,    
                 xGrd[i] + xsz, mu[0], var[0]) 
        for (j in 0 to ny – 1) 
          probY " IntegrateNormal(yGrd[j]-ysz,  
                   yGrd[j] + ysz, mu[1], var[1]) 
          kLo " lowerVox[i + j*nx] 
          kHi " upperVox[i + j*nx] 
          for (k in kLo to kHi) 
            probZ " IntegrateNormal(zGrd[k]-zsz,  
                     zGrd[k]+zsz, mu[2], var[2]) 
            v " i + j*nx + k*nx*ny 
            probXYZ " probX*probX*probZ 
            if (s == 0 or s == nStep) 
              tmp " tStep*probXYZ/2 
            else 
              tmp " tStep*probXYZ 
            end if 
            mkde[v] " mkde[v] + tmp 
            W " W + tmp 
          end for // z 
        end for // y 
      end for // x 
 
    end for // int step 
  end if // cond 
end for // move 
 
mkde " mkde/W // normalize probability 
return mkde 
 
 
 
 

 
 
KernelMean(t: double, t0: double, t1: double,        
           x0: double, x1: double,  
           y0: double ,y1: double,  
           z0: double, z1: double) 
           : double[3] 
 
mu " double[3] 
deltaT " t1 – t0 
alpha " (t – t0)/deltaT 
mu[0] " x0 + (x1 – x0)*alpha 
mu[1] " y0 + (y1 – y0)*alpha 
mu[2] " z0 + (z1 – z0)*alpha 
return mu 
 
KernelVar(t: double, t0: double, t1: double,     
          obVarXY0: double, obVarXY1: double,  
          obVarZ0: double, obVarZ1: double,  
          mvVarXY: double, mvVarZ: double) 
          : double[3] 
 
var " double[3] 
deltaT " t1 – t0 
alpha " (t – t0)/deltaT 
xyVar " deltaT*alpha*(1–alpha)*mvVarXY +  
         (1–alpha)*(1–alpha)*obVarXY0  +  
         alpha*alpha*obVarXY1 
var[0] " xyVar 
var[1] " xyVar 
var[2] " deltaT*alpha*(1–alpha)*mvVarZ +  
          (1–alpha)*(1–alpha)* obVarZ0 +        
          alpha*alpha* obVarZ1 
return var 
 
IntegrateNormal(x0: double, x1: double,  
                mu: double, var: double) 
                : double 
prob " Phi((x1-mu  / sqrt(var)) –  
       Phi((x0- mu)/ sqrt(var)) 
return prob  
 
 


